
www.manaraa.com

University of LeedsSCHOOL OF COMPUTER STUDIESRESEARCH REPORT SERIESReport 97.1
Algorithm Design and Analysis Using the WPRAM Model 1byJonathan M. Nash, Martin E. Dyer & Peter M. DewJanuary 1997

1To be published in High-Level Parallel Programming Models and Supportive Environments (HIPS'97)



www.manaraa.com

AbstractThe takeup of parallel computing has been hampered by the lack of portable software.The BSP model allows the design of portable code for regular computations. This paperdescribes the use of the WPRAM model to support more irregular problems. A shared queuedata type is described, which provides predictable and scalable performance characteristics.The queue can be used to structure the sharing of data in a parallel system, resulting incode which is portable and amenable to performance analysis.1 IntroductionIn the past, achieving high performance on parallel machines required the programmer to exploit thedetailed architectural features of the particular platform. The resulting prevalence of non-portable codehas severely limited the growth of the parallel software industry. There has recently been a conver-gence in the features of a parallel architecture, due to the availability of powerful and cheap commodityprocessors, and the use of scalable high performance networks. A requirement for the development ofportable software is the ability to characterise a machine in terms of its global communications capabili-ties, rather than the speci�cs of the network interconnection topology. This implies the characterisationof a parallel machine using a flat communications mechanism, in which all processors are equidistant.Platforms which support these characteristics include the Cray T3D/E and IBM SP2/3.There is now a requirement for a standard computational model which can characterise the essentialfeatures of these machines, to allow the design and analysis of portable and scalable algorithms. TheBulk Synchronous Parallelism (BSP) model [12, 4] is one such example. The main quality of theBSP is its simplicity, both in terms of the conceptual model and of the associated costing method. Acomputation is characterised by a sequence of supersteps in which communication and computation iscarried out independently. Each superstep can be costed using the performance characteristics whichmeasure the network granularity g and barrier synchronisation time L. The cost of an algorithm issimply the sum of its superstep costs. The solution of a problem using supersteps allows the resultingalgorithm to be simply costed (see the next section), and has advantages for debugging and performancemonitoring.There are problems for which the BSP seems less appropriate. Algorithms which make use of pointerreferenced shared data structures, or where the synchronisation patterns between processors can varydynamically, are not naturally suited to the use of supersteps. The WPRAM model (Weakly coherentPRAM) [10] aims to provide a small set of realistically costed operations which can e�ciently supportthese problems, as well as the important class of bulk synchronous computations. A wide range ofproblem classes have already been studied [6, 1, 10]. A potential disadvantage is the increased complexityof the cost analysis, since synchronisation in arbitrary groups, the structure of which may rely on runtimedependencies, is an intractable problem. The problem can be tackled by structuring the code using wellde�ned abstractions, to allow costing to be undertaken in a stepwise fashion. Figure 1(a) demonstratesthe framework used for the WPRAM. Shared abstract data types (SADTs) [3] provide a mechanismfor sharing information in a parallel system, and have a well de�ned interface and semantics. Theseallow many of the WPRAM's extended features to be hidden, resulting in user code which essentiallyoperates in a superstep fashion.This paper concentrates on an analysis of a queue SADT [9]. The queue supports predictable perfor-mance to the software layers above, with the performance of its operations being independent of theaccess of the queue by other processors. Section 2 describes the WPRAM support for bulk synchronousparallelism, together with the associated cost model. Section 3 presents the extended WPRAM opera-tions. Section 4 describes the use of these operations to support the queue, with predictable and scalableperformance. The section presents some performance characteristics for the queue, based on analyticaland simulation results. The code fragments throughout this paper are based on the notation used in C.1



www.manaraa.com

operations
bulk synchronous

execution
extended

The WPRAM Model

Shared abstract datatypes

Platforms

Applications

0 1 p-1

Local

Global

s, t

g

D,LFigure 1: (a) The Approach to Algorithm Design and Analysis; (b) The WPRAM Memory Model2 WPRAM superstep operationThe WPRAM supports the ability for all processors to barrier synchronise, in the same manner asthe BSP model, which divides a computation into a sequence of supersteps. Figure 1(b) shows thecommunication mechanisms used by the WPRAM, which is based around a shared address space.Global shared data is accessible at a uniform performance by all processors. Local shared data hasimproved performance when accessed by the processor which allocated the data. The latter can betaken advantage of when data locality is an important issue for the variables being accessed. Globalshared memory acts as a repository for data which has dynamic runtime access patterns which cannot beeasily predicted. Shared data is also weakly coherent [2], so that it is only guaranteed to be consistentbetween a set of processors if they explicitly synchronise in some way, such as through the barrieroperation.The WPRAM supports an associated cost model which allows the analysis of algorithms at design time.All costs are normalised with respect to the time, s, of a single local operation (nominally a 
oatingpoint computation). The other costs are as follows:� t: The time to transfer a word within the local memory of the processor.� g: The minimum period between remote memory accesses of successive shared words.� D: The latency between requesting a shared word and the result returning.� L: The time taken to execute a barrier operation across all processors.g and L are de�ned in an analogous manner to the BSP. L could be de�ned using g and D to furthersimplify the cost model. In a given superstep, the operation of processor pi can be characterised by thefollowing variables:� wi: The number of local computations.� loci[0::p� 1]: Where loci[j] is the number of local shared words requested from processor j.� gloi: The number of requested global shared words.The costing of a superstep can then be expressed as:w+L+gh+tn, wherew = maxp�1i=0 f wi gh = maxp�1i=0 f hi ghi = hsendi + hrecvihsendi = p�1p gloi + Pj 6=i loci[j]hrecvi = Pj 6=i ( glojp + locj[i] )n = maxp�1i=0 f gloip + loci[i] gThe term of hi represents the total number of words leaving (hsendi ) and entering (hrecvi ) processor pi.The costing assumes that global shared data is spread evenly across the machine, using some randomisinghash function [7]. The value n measures the number of words being transferred within the local memory2



www.manaraa.com

of any processor. It can be noted that the computed cost is at most a factor of three greater than thetrue cost, since the terms w, gh and tn can be equal but due to the execution of three unique processors.In practice this is unlikely, since there is typically either a mixture of all three cost components on eachprocessor, or one component dominates. The cost of a computation is simply the sum of the individualsupersteps. A completion time can be derived by multiplying through by a factor of s. This is similar tothe costing employed by the BSP model, although it encompasses both the usual direct access methodand the automatic mode of operation [12]. The automatic mode is typically used to emulate the PRAMmodel [12].3 Extended features of the WPRAMThe superstep operation described in the previous section forms the basis for expressing parallelismat the coarsest level. This section presents an overview of the support within the WPRAM for moreirregular and �ne grain forms of parallelism, together with an explanation of how these features �t intothe existing cost model.3.1 Data dependenciesIt is an advantage if each processor is able to independently guarantee the completion of a sequence ofdata accesses. For example, this enables the support of list-based operations, where a processor needsto be able to deference a pointer independently. In the WPRAM model, this is supported using theswitch operation.x = y; switch();A[x] = .... ;The execution of switch guarantees that all previous shared data accesses made by that processor havecompleted, allowing the results to be used within the following expressions. Within a superstep, ifprocessor pi executes ci switch operations, the cost of the superstep can be expressed as:w+L+gh+tn+Dc, where c = maxp�1i=0 f ci gAgain, it can be seen that this is at most a factor of four from the true cost, although this is unlikely,since terms of D imply that a processor is also involved in shared data access, incurring costs relatedto g.3.2 Point-to-point synchronisationList-based operations also require some coordination between the processors. This is most naturallysupported using point-to-point synchronisation. The WPRAM supports the idea of tag variables, whichoperate between a pair of processors, also guaranteeing shared data consistency (more formally, releaseconsistency is supported [2]). A tag is initially in an unset state, and a processor waiting on sucha tag will suspend its execution. Another processor can set the tag, which will unblock the waitingprocessor, if one exists (placing the tag back in its default unset state). The operations which achievethis are tag set(t) and tag wait(t), for some tag variable t. Complementary operations tag write(t; x)and tag read(t;&x) will also transfer a shared address value x as a side e�ect.The cost of individual tag operations can be characterised as D + g in the simplest form. This canbe added into the expression for the cost of an algorithm. However, superstep operation allows sucha simple representation of the cost because the processors are constrained to execute in a stepwisefashion. Within each step it is then known what data access requests each processor is executing. Tagscan potentially lose this advantage, since arbitrary groups of processors can now execute independently.In order to preserve the simple costing method, the tags need to be used in a structured manner. Section4 will describe one such method, based around the construction of a shared queue data structure.3.3 Concurrent atomic operationsThe WPRAM supports a set of operations which allow the concurrent update of a shared variable,without resorting to locking. An example is the addition of an integer value i to a shared integer I. A3



www.manaraa.com

processor executing l = read&add(I; i) gives the following atomic sequence:l = I; I = I + iUnder the concurrent execution of this operation, results are returned according to some arbitraryordering. Also, l = read&swap(I; a) exchanges a shared address a with the current address held in I.l = I; I = aThe implementation of the operations can either make use of hardware support within the network orsoftware methods to provide scalable performance [7]. It is assumed here that they incur the same costsas for regular data access. These operations allow the construction of shared data structures whichcan support a high degree of concurrency [9, 5]. The overview of the queue, described in the followingsection, shows how the operations can support concurrent access to shared array and list structures,and how this can be used to construct the queue data structure.4 A concurrent queue shared data typeThe WPRAM has been used to derive an implementation of a shared queue, which allows all processorsto simultaneously enqueue and dequeue items. A detailed implementation of the queue is given in [9].The semantics of the queue under concurrent access can be de�ned as follows:� If processors perform queue operations with no explicit synchronisation between them then theordering of the operations is as follows:{ Between processors it is arbitrary.{ Within a processor it follows the program ordering.� If processor set P x synchronises with P y, such that P y performs queue accesses after P x then:{ If items Ix were inserted by P x then any queue deletion operations performed by P y willretrieve items from Ix in preference to items inserted by P y.Setting P x = P y = fp0..pp�1g supports superstep consistency for queue operations. Setting P x = piand P y = pj (for i 6= j) supports tag variable consistency.4.1 An overview of the queue implementationIt is required that the performance of the queue scales linearly with the number of processors p, subjectto a degradation incurred by the network latency. More formallyf=cp=D,for a constant c and frequency f of queue insertion & deletion.A possibility is to use read&add to concurrently access a static shared array, as shown in Figure 2(a).l = read&add (I, 1);switch();A[i mod n] = .... ;Each processor retrieves a unique integer value (assuming that the integer has a large enough range ofvalues, so that an over
ow will not occur). It can then use this value, modulo the array size, to accessan array element. If the number of elements equals the number of processors then each can proceedconcurrently. Each array element can then be used support a queue insertion and deletion operation.However, this method cannot be directly used to support the queue abstraction, since the number ofoutstanding insert or delete requests may exceed the size of the array. So there must be some meansof dynamically allocating space at each array element in order to store references to inserted data, andrequests for the deletion of data from the queue. 4



www.manaraa.com

.... pntr

. . .

I

1 1 1 1. . .

read&add

I

. . . . . . . .

read&swap

pntrpntr

item item item
0 1 2

item

p-1

Tag
pntr

tag

pntr

Static Array

Insert Lists

Delete Lists

. . . . . . . . . . .

data

Figure 2: (a) Array and List Access; (b) Queue Data StructureThe read&swap operation can be used to support the concurrent insertion of items onto a shared linkedlist, as shown in Figure 2(a).struct list item fvoid *pntr;.... ;g item;l = read&swap (I, &item); switch();if (l != NULL) l!pntr = &item;Each processor updates the head pointer I by swapping the address of the new item, and is returned theprevious item (with the pntr �eld updated if the item exists). However, using this to directly supportthe queue does not give scalable performance, since list item deletion occurs serially.A solution is to use both structures - the array to provide concurrent access and the list supportingdynamic storage (Figure 2(b)). Array elements support two lists: one for inserted items and another forpending deletes. A processor accessing the queue will �rst �nd an array index using read&add (thereare two indices - one for each list pair), and then acess the a list using read&swap. A tag variableat each array position is used to coordinate interactions between each list pair. A tag within a deleterequest item is used to suspend the requesting processor until an inserted item becomes available. Adetailed description of the queue insertion and deletion procedures is presented in [9].4.2 An asymptotic analysis of the queue performanceUsing irregular forms of parallelism has the potential for an increased complexity of costing analysis.However, a number of queue implementation characteristics allow a simpli�ed costing.� Uniform data access patterns: Storing the array, lists and tags as global shared data results inuniform access times. The queue can store references to local shared data items to support datalocality within an algorithm.� A high level of concurrency: There are no implementation aspects which result in serialisationbetween processors. This is due to the use of concurrent atomic operations to access the staticarray and the lists.� Data-independent access times: Queue items can be inserted or deleted in a constant number ofsteps, independent of the number of items already present. This is again using the concurrentatomic operations to access the head of a list, and using tag variables to \pair o�" inserted itemswith pending delete requests.These features allow the times for queue operations to be speci�ed independently of any access patternswhich are presented. In other words, the queue exhibits predictable performance characteristics. An5



www.manaraa.com

access requires a constant number of steps, with any shared data accesses requesting a constant numberof words. For the cost analysis in Section 2, the values of wi, hi and ni are constant. Asymptotically,the cost of a queue access is �(s + g + t+D). The throughput of the queue is the number of accessescarried out by p processors per unit time, compared to a sequential version. This can be formalised ast(p; 1)=t(p; p), where t(n; p) is the time to perform n accesses on p processors. The throughput is thus�(p=fs+ g+ t+Dg). Assuming s, g and t are constant gives �(p=D), which matches the frequency f ,stated in Section 4.1.4.3 The practical performance of the queueA discrete event simulation of the WPRAM model on a distributed memory machine has been written[6], based on the performance of the T9000 and C104 products [11]. It includes the ability to pipelinemultiple shared data accesses and to overlap communication with local computation. A table of thedominant performance parameters and WPRAM operation costs is provided below. D is taken to beconstant over the given range of processors, and the minor local computation is assumed to be dominatedby shared data access costs. From these parameters, the cost of the queue operations can be derived(using the WPRAM code available on the simulator).Machine Parameter CostD 30 �secsg 5.6 �secs per wordWPRAM Operation CostAccess x global shared words D + xgTag operation D + gQueue Operation CostInsert 7D + 9g = 260 �secsDelete 19D + 24g = 704 �secs 1

10

100

1000

0 16 32 48 64 80 96 112 128

T
i
m
e
 
(
m
i
l
l
i
s
e
c
s
)

Processors

n=128: simulation
n=4096: simulation
n=128: analytical
n=4096: analyticalA comparison of the simulation results and analytical analysis for the queue is presented in the abovegraph. In this example, each of the p processors inserts and deletes n=p queue items (shared addressvalues). As can be seen, the results compare favourably. The analytical costs are higher since a worst-case costing is provided (assuming all options which lead to code execution are taken). For example,when p and n are both 128, simulation results give 802 �secs, as opposed to 964 �secs by the analyticalmethod.5 ConclusionsThis paper has presented a computational model, the WPRAM, for the design and analysis of scalablealgorithms. The WPRAM extends the bulk synchronous approach of the BSP with operations to supportmore irregular forms of parallelism. Using the example of a shared queue data structure, it was shownhow shared abstract data types SADTs) can be used to support tractable performance analysis, as wellas being used to provide modular and portable code development. Current work is focusing on the useof SADTs in the design of scalable dynamic load balancing methods [8].References[1] M. E. Dyer, J. M. Nash, and P. M. Dew. An Optimal Randomized Planar Convex Hull Algo-rithm With Good Empirical Performance. In The Seventh Annual ACM Symposium on ParallelAlgorithms and Architectures, pages 21{26, 1995.[2] K. Gharachorloo, S. V. Adve, A. Gupta, and J. H. Hennessy. Programming for Di�erent MemoryConsistency Models. Journal of Parallel and Distributed Computing, 15:399{407, 1992.[3] M. Herlihy. Methodology for Implementing Highly Concurrent Data Objects. ACM Transactionson Programming Languages and Systems, 15, 1993.6



www.manaraa.com

[4] W. F. McColl. An Architecture Independent ProgrammingModel For Scalable Parallel Computing.In J. Ferrante and A. J. G. Hey, editors, Portability and Performance for Parallel Processing. JohnWiley and Sons, 1993.[5] J. M. Mellor-Crummey and M. L. Scott. Synchronisation Without Contention. In ASPLOS,volume 4, pages 269{278, 1991.[6] J. M. Nash. A Study of the XPRAM Model for Parallel Computing. PhD thesis, School of ComputerStudies, University of Leeds, 1993.[7] J. M. Nash, P. M. Dew, J. R. Davy, and M. E. Dyer. Implementation Issues Relating to theWPRAM Model for Scalable Computing. In EuroPar96, pages 319{326. Springer Lecture Notes inComputer Science (volume I), 1996.[8] J. M. Nash, P. M. Dew, J. R. Davy, and M. E. Dyer. Scalable Dynamic Load Balancing using aHighly Concurrent Shared Data Type. In The 2nd European School of Computer Science: ParallelProgramming Environments for High Performance Computing, pages 123{128, April 1996.[9] J. M. Nash, P. M. Dew, and M. E. Dyer. A Scalable Concurrent Queue on a Message PassingMachine. The Computer Journal, 39(6), 1996.[10] J. M. Nash, M. E. Dyer, and P. M. Dew. Designing Practical Parallel Algorithms for ScalableMessage Passing Machines. In WTC'95 World Transputer Congress, pages 529{544, 1995.[11] P. W. Thompson and P. W. Welch. Networks, Routers and Transputers. IOS Press, 1994.[12] L. G. Valiant. A Bridging Model for Parallel Computation.Communications of the ACM, 33(8):103{111, 1990.

7


